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Abstract - The use of mathematical models in the study of wild host-nematodes interaction is still limited since the
estimate of the numerical values of many parameters of the models are usually difficult to be quantified empirically. In
this paper we present a technique of parameter estimation based on a mathematical model for macroparasitic infec-
tions using a Bayesian updating method. As a case- study we considered a Trichostrongylidae, principally Teladorsagia
circumcinta, infection in a chamois population (Rupicapra rupicapra L.). Using these estimates a value of the basic
reproduction ratio (R0)  equal to 2.4 was obtained.

Riassunto - L’utilizzo dei modelli matematici nello studio delle interazioni tra ospiti vertebrati e nematodi parassiti è ancora
limitato poiché la stima dei valori numerici di molti parametri in essi contenuti risulta spesso difficoltosa. In questo lavoro
viene presentata una tecnica di stima parametrica  che utilizza  un approccio di tipo Bayesiano. E’ stato utilizzato un modello
matematico per  infestazioni macroparassitarie a ciclo diretto implementato su dati di tipo empirico relativi a un’infestazio-
ne da Trichostrongylidae, soprattutto Teladorsagia circumcinta, in una popolazione di camoscio (Rupicapra rupicapra L.). Le
stime dei parametri ottenute forniscono un valore di R0 (tasso base di riproduzione del parassita) pari a 2.4.

1. Introduction
Mathematical models play a significant role in
our understanding of epidemiology and
dynamics of parasite-host interactions
(Anderson & May, 1991; Scott & Smith, 1994;
Grenfell & Dobson, 1995) but their use
in the analysis of many macroparasites (as
nematodes) -wildlife systems is still limited
(Barlow, 1995).
One reason is that the estimate of the numeri-
cal values of many parameters used in such
models require long-term studies on host
demography and manipulative experiment to
understand parasite induced effects (Gulland,
1992; Hudson et al., 1992; Hudson et al. 2002.;
McCallum & Dobson, 1995). Environmental
complexity, in terms of geomorphology and cli-
mate, and species behaviour that affect their
observation and monitoring (these characteri-
stics are common in Alpine ecosystems and
many of their wildlife species) often represent a
limitation for the development of  epidemiolo-
gical and ecological studies on nematodes
infections in wildlife with the application of
mathematical models.
Our theoretical approach to these constrains is
to use mathematical models as exploratory
tools (Damaggio et al., 1996; Rosà et al., 1997)
for obtaining a first estimate of some funda-

mental parasite population parameters and
parameters regarding the host-parasite interac-
tion using only few measures of parasitological
and demographic variables of the two popula-
tions. 
These estimate will be  derived by simulating
the relationship between parasite dynamics and
host dynamics with the use of a mathematical
model. They will represent  a guidance for
further study and they will prove useful only if
there is a reasonable agreement between the
dynamics simulated by the model and the tem-
poral changes actually observed in the host and
parasite populations under study.
In this paper we present the estimate of the
numerical values of some parameters regarding
a Trichostrongylidae infection in a chamois
(Rupicapra rupicapra L. ) population obtained
by the application of a 4-dimensional determi-
nistic model (Pugliese et al., 1998) to a set of
empirical estimate of  parasite and host demo-
graphic variables (Rizzoli, 1995; Damaggio et
al., 1996; Rosà et al.,1997).

2. Material and methods
2.1 Case study
Epidemiological investigations on a chamois
population (Rupicapra rupicapra L.) of the
Province of Trento (Italy) were carried out
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after a population crash (Rizzoli, 1995).
Pulmonary and abomasal nematodes, principal-
ly Neostrongylus linearis (Marotel, 1913) and
Teladorsagia circumcinta, Stadelmann, 1894,
were recorded as highly prevalent and abun-
dant. Under the hypothesis that the parasite
intensity of infection was related with changes
in the vital rates of the host population, a 4-
dimensional deterministic model was construc-
ted. In this study only direct transmitted para-
sites were considered. Measure of abomasal
nematodes abundance and aggregation were
recorded during a 4 year surveys; host demo-
graphy was studied over 10 years population
counts (Rosà et al., 1997). 

2.2 The mathematical model
A classical model for studying host-macropara-
site interactions was introduced by Anderson
and May (1978) for the case of macroparasites
with direct life-cycles. This model has been
modified by letting the aggregation be a dyna-
mic variable (Adler & Kretzschmar, 1992),
introducing a carrying capacity for the host
(Pugliese & Rosà, 1995) and assuming that
infections will generally occur with several lar-
vae at the same time (Damaggio et al., 1996).
The resulting model (Pugliese et al., 1998) has
a reasonable flexibility in explaining observed
values of aggregation, and all its parameters
have a biological interpretation and are, at
least in principle, passable of independent mea-
surement. Mathematically, it consists of four
coupled differential equations (equations 1)
describing changes in the host population size,
Ν; the mean adult parasite burden, χ; the
aggregation of parasite distribution, Α (defined
as the ratio of the variance to the mean) and
the number of free living larvae, L.
1)

The parameters of the model are described in
Table 1.  Equations of the model (1) can be
examined when the parasite is first introduced
to the host populations  to produce an expres-
sion for the basic reproduction ratio (R0) of the
parasite. When λ=0 we obtain the following
expression:

2)

When the basic reproduction ratio equals
unity, equation (2) can be rearranged to provi-
de an expression for the threshold number of
hosts required to continuously sustain an abo-
masal infection:
3)

When λ>0 an extra term appears in the deno-
minator of R0  because the infection occur
with several larvae at the same time; conse-
quently, also the expression of   will differ
somewhat (for details see Pugliese et al., 1998).

2.3 Estimating parameters: techniques
A standard method in parameter estimation is
the minimisation of the sum of squared devia-
tions between model predictions and observed
data. Without aiming at a precise estimate with
an error margin, we suggest here instead two
simpler methods, based on a single (or few) sta-
tic measure; these methods give a quick idea of
the values of model parameters that are compa-
tible with data, and of the sensitivity of model
predictions on parameter values.

2.4 Backward deterministic estimation
In the simplest method, we simply assume that
the observed values correspond to an equili-
brium of the model. We then use the model
backwards, finding from the equilibrium the
parameter values. More precisely, we start from
the equations for the endemic equilibrium,
obtained setting equal to 0 the right hand sides
of the model (1). With some algebraic manipu-
lations, we obtain, if ξ=0, the following equa-
tions to estimate α, λ, θ, and h:
4)

5)

6)
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7)

If a numerical value for L is not known, but it
may be assumed that it is relatively large, it is
still possible to estimate the values of α, λ and
the product of θ, h. In fact, the product of
equations (6) and (7) gives

8)

With this method it possible to estimate a
number of parameters equal to the number of
equations of the model, if all the variables of
the model are observable. The parameters to be
estimated are those for which direct measures
are lacking or are most uncertain. The other
parameters are fixed at the best empirical esti-
mates. While this method is certainly simpli-
stic, it can be integrated through a sensitivity
study (Fig. 1): one can vary the values of the
parameters to be estimated, and see the effect
on the equilibrium values.

2.5 Bayesian updating method
The previous method can be integrated with

the standard method of minimising the squared
deviations via a Bayesian  technique. 
In Bayesian methods, one starts from a prior
distribution on parameters, reflecting initial
uncertainties; following standard usage, the
multidimensional parameter will be denoted by
Θ,  the observed data by X,  the prior distribu-
tion by P(Θ). As a second ingredient, one has
a likelihood function of the observed data,
P(X/Θ), i.e. P(X/Θ) is the probability that the
observed data occur given that the parameter is
equal to Θ. Finally, Bayes’ formula yields the
posterior (after having observed the data)
distribution P(X/Θ) of the parameters as
9)

where c is a normalising constant that ensures
that P(X/Θ) is a probability distribution. In our
case, the prior parameter distributions were
chosen on the basis of literature data and our
feeling for existing uncertainties. The choice is
described in the Table 2. 
The likelihood function will depend on the
dynamical model we are using and there are
several possible choices (Patwardhan and
Small, 1992). Our choice was simply the
Gaussian centred on the equilibrium values
predicted by the model for a given value of the
parameters.
Precisely, letting N, x and A denote the obser-
ved values of host population size, mean parasi-
te burden, and aggregation of parasite distribu-
tion, we used 

where

and N* (Θ), x* (Θ), A* (Θ) represent the
values of endemic equilibrium for our mathe-
matical model when the multidimensional
parameter is Θ. In words, this choice says that,
if   were known, a data point would be more
likely, the closest (in the sense of least squares)
it was to the equilibrium of the model with
parameter Θ.
To obtain the posterior distribution on Θ, using
(9), we need to compute P (X/Θ), and thus  N*
(Θ), x* (Θ), A* (Θ), for a large number of pos-
sible values of Θ. Since Θ is multidimensional,
the number becomes quickly very large: for
instance, if Θ was 6-dimensional and we were

Tab. 1 - Meaning of variables and parameters of the
model

Parameter Description

N Host population size
x Mean adult parasite burden
A Aggregation of parasite distribution

(defined as variance/mean)
L Number of free living larvae
β Instantaneous birth rate of hosts 
µ Instantaneous death rate of hosts 
NK Carrying capacity for the host population 
σ Instantaneous death rate of adult parasite 

within the host 
λ Mean number of free-living stages forming 

a single infecting “parcel”
h Instantaneous rate of production of 

infecting larva 
δ Instantaneous death rate of adult of free-

living stages 
ψ Proportion of ingested larvae that develop 

to adult stage
α Instantaneous death rate of host due to the 

parasite 
ξ Instantaneous reduction in chamois 

fertility due the parasite 
θ Average instantaneous rate of infection of 

host by parasite 



content with a very coarse subdivision of each
one-dimensional component of Θ in 10 parts,
we would have 106 combinations to consider.
In order to improve the efficiency, we did not
computed all possible combinations, but fol-
lowed the Latin Hypercube sampling scheme:
see McKay et al. (1979) or Blower and
Dowlatabadi (1994) for details.
The posterior distribution is genuinely multidi-
mensional: even if in the prior distribution
parameters are assumed to be not correlated,
they will generally be correlated in the poste-
rior distribution. In order to have a grasp of the
posterior distribution, we will show its one-
dimensional marginal distributions (the distri-
butions of each single uncertain parameter of
the model) and some descriptive statistics
(mainly mean and variance of each parameter,
and their correlations). 

3. Results
The results of the sensitivity study on the
backward deterministic estimation are presen-
ted in Fig. 1. Part A shows the effect of varia-
tions of parameter values on the mean parasite
burden and the aggregation of the parasite
distribution: λ (the mean number of free-living
stages forming a single infecting parcel)
influences only the aggregation, and basically
the aggregation depends only on λ.  
Part B shows the effect of variations of parame-
ter values on the mean parasite burden (x) and
the host population size (N): α (death rate of
host due to the parasite) influences, over a
large range, only the mean parasite burden and
not the host population, where the increase of
x reduces the mean parasite burden. θ h (the

product of the transmission rate and the parasi-
te fecundity)  moves N and x on a fixed line,
where the increase of θ h increases the mean
parasite burden and decreases the host popula-
tion size. This results was explained by the
increase of the basic reproduction ratio of the
parasites (R0). 
Fig. 2 shows the marginal distributions of the
posterior distribution for each parameter, com-
pared with the prior distributions. The estima-
tes of the mean values, the variance and some
correlation coefficient of the distribution of the
estimated parameters are reported in Table 3.
Using these values we obtained the basic repro-
duction ratio (R0) equal to 2.4 and the thre-
shold number of hosts required to continuously
sustain the infection (NT) around 600 (Tab.4).
In Table 5 the values of the increasing in mor-
tality α.i (additive effect µtot=µnat+µprel+α.i)
and reduction in fertility ξi (multiplicative
effect βtot=βnat 

.ξi) related to different values of
the mean parasite burden using the estimated
values of  α and ξ are reported. 

4. Discussion
One limitation to the use of mathematical
models for studying the dynamical interaction
among nematodes parasites and their wild host
is that the estimate of most of the numerical
values of their parameters require long-term
studies on host demography and manipulative
experiment to understand parasite induced
effects (Gulland, 1992; Hudson et al., 1992;
Hudson et al., 2002; McCallum & Dobson,
1995) that in many natural populations and
ecosystems, like those of the Alps, they result
difficult to be carried out.
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Fig. 1 – Sensitivity study on the method of fixed parameters for the estimation of α , λ and θh. Other parameters
are β= 0.44, µ= 0.23, NΚ=1500, (Rosà et al., 1997); δ =3, σ =6, ψ =0.65 (Smith and Grenfell, 1985; Michel, 1970);

ξ =1 . The endemic equilibrium is assumed to be Ν∗=750, x∗=700, Α∗=500 (Rosà et al., 1997). A) Projection on
the (A, x) plane; B) Projection on the (N, x) plane. The point of intersection between two curves, (α=1.5·10-4,
λ=920 , θh=4.2·10-2 ) is the same for both figures and represents the backward deterministic estimate.
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Mathematical models can be used as explora-
tory tools to give a first estimate of some funda-
mental parasite population parameters and
parameters regarding the host-parasite interac-
tion using only few measures of parasitological
and demographic variables of the population
and simulating the relationship between parasi-
te and host dynamics with the use of the model. 
This methods give an initial estimate for the
values of parameters difficult to estimate empi-
rically thus allowing a first approximation of
the basic reproductive ratio R0 of the parasite
and the threshold population density NT
necessary to continuously sustain the infection. 
These estimates, in absence of detailed empiri-

cal information, can provide an initial guidan-
ce for accept or exclude the hypothesis that
macroparasites dynamics is related to the host
dynamics allowing to take in account the
potential relative impact of the parasite on the
host, along with other ecological factors as cli-
mate and food shortage (Grenfell et al., 1998).
The empirical value of such parameters can be
tested subsequently on the basis of population
counts, necroscopic and parasitological exami-
nation on a sample of the population, along
with experimental infections.
As example, in the Table 4 different values of
the mean parasite burden, were related to an
increase in host mortality and reduction in

Tab. 2 - Patterns of the prior distribution of parameters

Parameters Distribution Min Max

α Triangular 0 10-3

θ Uniform 10-5 10-3

ξ Uniform 0.998 1
ψ Uniform 0.3 1
Parameters Distribution Mean Varianceh

h Normal 500 1000

δ Normal 3 0.5

σ Normal 6 2.5

λ Log-normal 80 106

Tab. 3 - Mean and variance of the posterior distributions of parameters. Correlation coefficients (R) of some pairs
of parameters. Only correlation coefficients greater than 0.1 in absolute value are reported.

Parameters Mean value Variance

α 1.02E-04 2.14E-09

θ 1.22E-04 3.20E-09

ψ 0.57 3.87E-02

h 499.11 511.84

δ 3.09 2.46E-01

σ 6.10 1.28

λ 756.36 7.49E+04

ξ 0.9998 1.64E-08

Pairs of  parameters R

α,θ 0.12

α,ξ 0.66

θ,δ 0.38

θ,σ 0.39

θ,ψ -0.71



host fertility. Such values appeared comparable
with the parasitological data obtained from a
sample of the populations under study at diffe-
rent time when variation in host fecundity and
mortality rates were observed (Rizzoli, 1995;
Rosà et al., 1997).
Moreover, after a posterior distribution has
been obtained, new simulation can be perfor-
med by choosing  parameter values randomly
according to the posterior distribution; such
simulations will yield an estimate of uncertain-
ties in the forecast. 
A second aim of these methods is to provide a
starting point for empirical estimates of the
parameters: if one expects, as example, the

value of θ (the encounter rate between infec-
ting larvae and hosts) to be around 0.0001, one
would design an experiment to measure it diffe-
rently (or would decide that such a measure
would be altogether impossible) than if it were
around 0.01. Via the sensitivity graphs (Fig 1),
one can also see that a precise measure of some
parameter is not needed if one is only intere-
sted in some variables of the model. 
A third result of these estimates is to prove
that the mathematical model is deficient at
some stages: if the parameter values necessary
to make the model compatible with data are
completely different from empirical estimates,
then something relevant is wrong with that
model.
We illustrate these points, referring to our case
study. When the posterior distribution is simi-
lar to the prior distribution (as it is for ψ,  h, δ,
σ in Fig 2), our procedure has not been useful
in resolving uncertainties: our empirical data
are not sufficient to discriminate the value of
these parameters. On the other hand, when it
is different (the case of α, θ, λ and, to some
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Fig. 2 – Marginal posterior distribution of the uncertain parameters according to the Bayesian updating method.
The prior distribution of Box 4 was used. To evaluate the sum of squared deviations we used Ν=750, σ1=200,
x=700, σ2=200, Α=500, σ3=250. The other parameters were fixed at β=0.44, µ=0.23 and ΝΚ=1500.

Tab. 4 - Estimated values of the basic reproduction
ratio (R0) and the threshold number of hosts required
to continuously sustain the infection (NT) 

Parameters Estimated value

R0 2.4

NT 603



Mathematical models and wildlife diseases Rosà et al.

degree, ξ), the uncertainty has actually decrea-
sed: our new estimates (Table 3) can be a star-
ting point for empirical studies. 
Finally, one can compare the posterior distribu-
tion obtained for λ with some empirical esti-
mated, obtained by Rosà et al. (1997), that
estimate λ in the range 60-100. We must con-
clude that the model (1) can not account for
the amount of aggregation measured in the
chamois population: some other mechanism of
generating aggregation must be considered.
This last point emphasises the difference
between using this model and the classical
model by Anderson and May (1978); in the
latter, the aggregation is simply a parameter of
the model while in  our model aggregation is a
dynamic variable; its value are predicted by the
model on the basis of the parameter values,
which are susceptible of independent measures.
Thus, it become possible to falsify the model
on the basis of  small sample size and few empi-
rical data.
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